Sparse 2D Fast Fourier Transform

نویسندگان

  • André Rauh
  • Gonzalo R. Arce
چکیده

This paper extends the concepts of the Sparse Fast Fourier Transform (sFFT) Algorithm introduced in [1] to work with two dimensional (2D) data. The 2D algorithm requires several generalizations to multiple key concepts of the 1D sparse Fourier transform algorithm. Furthermore, several parameters needed in the algorithm are optimized for the reconstruction of sparse image spectra. This paper addresses the case of the exact k-sparse Fourier transform but the underlying concepts can be applied to the general case of finding a k-sparse approximation of the Fourier transform of an arbitrary signal. The proposed algorithm can further be extended to even higher dimensions. Simulations illustrate the efficiency and accuracy of the proposed algorithm when applied to real images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and Efficient Sparse 2D Discrete Fourier Transform using Sparse-Graph Codes

We present a novel algorithm, named the 2D-FFAST 1, to compute a sparse 2D-Discrete Fourier Transform (2D-DFT) featuring both low sample complexity and low computational complexity. The proposed algorithm is based on mixed concepts from signal processing (sub-sampling and aliasing), coding theory (sparse-graph codes) and number theory (Chinese-remainder-theorem) and generalizes the 1D-FFAST 2 a...

متن کامل

High Performance Sparse Fast Fourier Transform

The Sparse Fast Fourier Transform is a recent algorithm developed by Hassanieh et al. at MIT for Discrete Fourier Transforms on signals with a sparse frequency domain. A reference implementation of the algorithm exists and proves that the Sparse Fast Fourier Transform can be faster than modern FFT libraries. However, the reference implementation does not take advantage of modern hardware featur...

متن کامل

07 - 12 Multi - asset option pricing using a parallel Fourier - based technique

In this paper we present and evaluate a Fourier-based sparse grid method for pricing multi-asset options. This involves computing multidimensional integrals efficiently and we do it by the Fast Fourier Transform. We also propose and evaluate ways to deal with the curse of dimensionality by means of parallel partitioning of the Fourier transform and by incorporating a parallel sparse grids metho...

متن کامل

The sparse fourier transform : theory & practice

The Fourier transform is one of the most fundamental tools for computing the frequency representation of signals. It plays a central role in signal processing, communications, audio and video compression, medical imaging, genomics, astronomy, as well as many other areas. Because of its widespread use, fast algorithms for computing the Fourier transform can benefit a large number of applications...

متن کامل

Data - sparse matrix computations Lecture 2 : FFT - The Fast Fourier Transform Lecturer : Anil Damle

It is without a doubt, one crucial piece of the toolbox of numerical methods. The FFT or Fast Fourier Transform is a fast algorithm used to compute the Discrete Fourier Transform. It is one of the most common discrete transforms used today. Note: While many other algorithms used throughout this course can be coded up for use in other projects, you shouldn’t attempt to do this with the FFT. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013